

Managed by Fermi Research Alliance, LLC for the U.S. Department of Energy Office of Science

# **Exascale and Exabytes: Future directions in HEP Software and Computing**

Oliver Gutsche

DPF2015 - Meeting of the Division of Particles & Fields of the American Physical Society

6. August 2015

#### Disclaimer

# About me

- Scientist at Fermilab
  - Searching for SuperSymmetry and Dark Matter and doing Standard Model Top Physics with CMS
- Assistant Head of the Scientific Computing Division at Fermilab

# Disclaimer

- Not a comprehensive review → selection of concepts and developments I think will be important for the future
- My expertise is in computing for collider experiments, there will be some bias in this talk





#### **Audience**



# This talk is for you!



**Grad Students** 

Postdocs



#### **The Scientific Process**



Software & Computing is an integral part of the scientific process



# **Software & Computing**



Software is important for every step on the way to scientific results



# **Software & Computing**



- Computing resources (Storage and Network, Processing, ...) are needed for all steps



#### **Unfair!**

Simplified picture, I forgot major software & computing areas



**Lattice QCD** 



everything else I could not include ...



# Software



#### **Frameworks**

- Underlying infrastructure, core of the software
  - Large experiments have their own Frameworks
  - Trend: community frameworks serving several experiments or detector technologies
    - Art: common framework for neutrino and muon experiments
    - LArSoft: common framework for liquid argon TPC (LArTPC) reconstruction software
    - Gaudi: common underlying framework for ATLAS and LHCb software
    - ALFA: the new ALICE-FAIR software framework

•



#### **Moore's Law**

 Traditionally, HEP software is optimized for a "simple" architecture

- x86 based Linux
- Machines:
  - ≥1 CPUs with ≥1 Cores
- Shared memory
- Shared local disk space
- An application uses one core and memory and local disk space

#### As Transistor Count Increases, Clock Speed Levels Off



What we see: more and more cores, but less powerful individually.



# New technologies: more and more cores!

- x86-based machines: running into limitations
  - Each application needs
    - "A lot" of memory (~2GB for LHC experiments) and corresponding bandwidth from memory to a core
    - The more cores in a single machine → the more memory and bandwidth is needed
- New technology: GPGPU: General-purpose computing on graphics processing units
  - Use of a graphics processing units (GPUs) optimized for parallel processing → using many cores per application
  - To perform computation traditionally handled by the central processing unit (CPU)
- New technology: Co-Processor architectures
  - Keyword: Intel MIC (Many Integrated Core) Architecture
- Consequence: We need to use more cores in parallel for our applications!



#### Multi-threading: frameworks

- Advantage: save memory by sharing between threads
- current state: run each event in own thread



 future: run parts of events in different threads → higher optimization results with even less memory usage



#### Thread-safe programming

- New technologies: multi-threading,
   GPGPU, Co-Processors
  - Require new programming skills!
  - My opinion: comparable to Fortran → C++ switch
- Multi-threaded programming needs to be done right
  - Small amounts of non-thread-safe code reduces the efficiency significantly → Amdahl's law
- Go and learn thread-safe programming!





# Storage

#### What is a Petabyte?







#### LHC schedule



# LHC expectation data volumes



- Shown: RAW expectations
  - Derived data (RECO, Simulation): factor 8 of RAW
- LHC Run 4 is starting the exabyte era
- How do we analyze that much data in the future?



# Strong networks: ESNet





Copyon Gigapool
2,1002, Seattle/Chicago

Well
1005, Seattl



 <sup>17</sup> DOE laboratories

# Distributed infrastructures and transfer systems

#### Example: Worldwide LHC Grid (WLCG)



Community uses various solutions to provide distributed access to data:

Experiment specific: Atlas (Rucio), CMS (PhEDEx), .... Shared: SAM (Neutrino and Muon experiments)



CMS transfers: more than 2 PB per week



# **Dynamic Data Management**

- Subscription based transfer systems
  - PhEDEx (CMS) and Rucio (Atlas)
  - LHC Run 1: mostly manual operations
  - LHC Run 2: dynamic data management
    - Popularity is tracked per dataset
    - Replica count across sites is increased or decreased according to popularity
- Fully integrated distribution system
  - SAM (shared amongst Neutrino and Muon experiments)
  - All movement is based on requests for datasets from jobs.
  - Interfaces to storage at sites, performs cache-to-cache copies if necessary
- Data is distributed automatically for the community





#### **Data Federations**

- xrootd: remote access to files
- ALICE based on xrootd from the beginning
- CMS and Atlas deployed xrootd federations
  - AAA for CMS, FAX for Atlas
  - Allows for remote access to all files on disk at all sites
  - Use cases:
    - Fall back
    - Overflow for ~10% of all jobs







#### **OSG StashCache**

# OSG: StashCache

- Bringing opportunistic storage usage to all users of OSG
- OSG collaborators provide local disk space
- OSG is running xrootd cache servers
  - Dynamic population of caches → efficient distributed access to files
    - For users that don't have infrastructures like CMS and Atlas





# **Active Archival Facility**

- HEP has the tools and experience for the distributed exabyte scale
  - We are "best in class" in the field of scientific data management
- We are working with and for the whole science community
  - To bring our expertise to everyone's science
  - To enable everyone to manage, distribute and access their data, globally
- Example: Fermilab's Active Archival Facility (AAF)
  - Provide services to other science activities to preserve integrity and availability of important and irreplaceable scientific data
  - Projects:
    - Genomic research community is archiving datasets at Fermilab's AAF and providing access through Fermilab services to ~300 researchers all over the world
    - University of Nebraska and University of Wisconsin are setting up archival efforts with Fermilab's AAF





# Processing

#### New resource providers

# Grid

- Virtual Organizations (VOs) of users trusted by Grid sites
- VOs get allocations → Pledges
  - Unused allocations: opportunistic resources

# Trust Federation

# Cloud

- Community Clouds Similar trust federation to Grids
- Commercial Clouds Pay-As-You-Go model
  - Strongly accounted
  - Near-infinite capacity → Elasticity
  - Spot price market

# Economic Model

# HPC

- Researchers granted access to HPC installations
- Peer review committees award
   Allocations
  - Awards model designed for individual PIs rather than large collaborations

Grant Allocation



# **Evolving the Grid**





TIME

- Experiments don't need all the resources all the time
  - Conference schedule, holiday seasons, accelerator schedules, etc.
  - Resource needs vary with time -> Provisioning needs to adapt



#### Fermilab's HEPCloud

- Many experiments and facilities are exploring using commercial cloud providers to provision for peak
  - Examples: Atlas, CMS, STAR, NOvA, etc. / BNL, FNAL, CNAF, etc.
- Example: Fermilab's HEPCloud
  - Provision commercial cloud resources in addition to physically owned resources
  - Transparent to the user

#### **Traditional Fermilab Facility**



#### Fermilab HEPCloud



# Open Science Grid → Facilitating shared access

- Researcher use a single interface to use resources ...
  - ... they own
  - ... others are willing to share
  - ... they have an allocation on
  - they buy from a commercial (cloud) provider



- OSG focuses on making this technically possible for Distributed High Throughput Computing
  - Operate a shared Production Infrastructure
  - Advance a shared Software Infrastructure
  - Spread knowledge across Researchers, IT professionals & Software developers
- → Open Facility (glideinWMS)
- → Open Software Stack
- → Open Ecosystem



#### HPC & HEP

- HTC: High Throughput Computing
  - Independent, sequential jobs that can be individually scheduled on many different computing resources across multiple administrative boundaries(\*)
- HPC: High Performance Computing
  - Tightly coupled parallel jobs, must execute within a particular site with low-latency interconnects(\*)
- Long history in HEP in using HPC installations
  - Lattice QCD and Accelerator Modeling exploit the low latency interconnects successfully for a long time
- Community effort: enable traditional HEP framework applications to run on HPC installations
  - Example: Mira at Argonne (PowerPC, ~49k nodes each 16 cores, almost 800k cores)
  - Generating Atlas LHC Events with Algren









#### The Future: Exascale → more cores!

| System attributes            | NERSC<br>Now                                | OLCF<br>Now                             | ALCF<br>Now                | NERSC Upgrade                                                            | OLCF Upgrade                                                    | ALCF Upgrades                                       |                                                                             |
|------------------------------|---------------------------------------------|-----------------------------------------|----------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|
| Name<br>Planned Installation | Edison                                      | TITAN                                   | MIRA                       | Cori<br>2016                                                             | Summit 2017-2018                                                | Theta<br>2016                                       | Aurora<br>2018-2019                                                         |
| System peak (PF)             | 2.6                                         | 27                                      | 10                         | > 30                                                                     | 150                                                             | >8.5                                                | 180                                                                         |
| Peak Power (MW)              | 2                                           | 9                                       | 4.8                        | < 3.7                                                                    | 10                                                              | 1.7                                                 | 13                                                                          |
| Total system memory          | 357 TB                                      | 710TB                                   | 768TB                      | ~1 PB DDR4 + High Bandwidth Memory (HBM) +1.5PB persistent memory        | > 1.74 PB<br>DDR4 + HBM +<br>2.8 PB<br>persistent<br>memory     | >480 TB DDR4 +<br>High Bandwidth<br>Memory (HBM)    | > 7 PB High Bandwidth On- Package Memory Local Memory and Persistent Memory |
| Node performance (TF)        | 0.460                                       | 1.452                                   | 0.204                      | > 3                                                                      | > 40                                                            | > 3                                                 | > 17 times Mira                                                             |
| Node processors              | Intel Ivy<br>Bridge                         | AMD<br>Opteron<br>Nvidia<br>Kepler      | 64-bit<br>PowerPC<br>A2    | Intel Knights Landing many core CPUs Intel Haswell CPU in data partition | Multiple IBM<br>Power9 CPUs &<br>multiple Nvidia<br>Voltas GPUS | Intel Knights<br>Landing Xeon Phi<br>many core CPUs | Knights Hill Xeon<br>Phi many core<br>CPUs                                  |
| System size (nodes)          | 5,600<br>nodes                              | 18,688<br>nodes                         | 49,152                     | 9,300 nodes<br>1,900 nodes in<br>data partition                          | ~3,500 nodes                                                    | >2,500 nodes                                        | >50,000 nodes                                                               |
| System Interconnect          | Aries                                       | Gemini                                  | 5D Torus                   | Aries                                                                    | Dual Rail EDR-<br>IB                                            | Aries                                               | 2 <sup>nd</sup> Generation Intel<br>Omni-Path<br>Architecture               |
| File System                  | 7.6 PB<br>168 GB/<br>s, Lustre <sup>®</sup> | 32 PB<br>1 TB/s,<br>Lustre <sup>®</sup> | 26 PB<br>300 GB/s<br>GPFS™ | 28 PB<br>744 GB/s<br>Lustre <sup>®</sup>                                 | 120 PB<br>1 TB/s<br>GPFS™                                       | 10PB, 210 GB/s<br>Lustre initial                    | 150 PB<br>1 TB/s<br>Lustre®                                                 |

#### Projected Parallelism for Exascale



- Department of Energy's (DOE) Advanced Scientific Computing Research (ASCR) program plans for Exascale Era → "A lot more cores!"
- Opens up exciting possibilities for HEP: in the light of significantly increasing resource needs (for example for the High Luminosity LHC)

#### **New architectures**





- HEP applications need a lot of memory and memory bandwidth
  - Cannot have both in Exascale machines → new architectures
  - Requires to rethink how we design HEP applications!



# Summary & Outlook

#### Take-home messages

- Software and Computing are integral parts of the HEP science process
  - Know the tools and their capabilities -> Get physics results efficiently and reliably
- Learn multi-threaded programming!!!
- Having to handle Exabytes of data is not that far off
  - Many new tools help you, both if you are working for a LHC collaboration, the Neutrino and Muon Experiment Community or any other HEP or non-HEP experiments
- Science will look different in the Exascale era
  - Commercial clouds and Exascale HPC machines will change the way when and how we do computing



# Acknowledgements

 Many thanks to DPF 2015 for the invitation.

# Thanks to

- All my colleagues who make running science software at unprecedented scales possible
- All my colleagues who helped preparing this talk

#### And now:





